If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-9r-136=0
a = 1; b = -9; c = -136;
Δ = b2-4ac
Δ = -92-4·1·(-136)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-25}{2*1}=\frac{-16}{2} =-8 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+25}{2*1}=\frac{34}{2} =17 $
| -93=6(x-8)-3 | | 4x-3x-8+8=X | | 7+9x=22+4x | | x^2+x-20=104 | | 6a^2+9a-80=0 | | x-1.24=-6 | | -92=-7(v+8)-5v | | 0=9x+7-3x | | 4+6×=7x-5 | | 82x+9-16=56 | | +3x+7=25 | | 19=-1+3n-1 | | X^3+3x^2+2x=2184 | | 1/3x-9=5 | | 9/7=6/4x+2 | | Y=1.8x+5 | | 18x+(-3)=-15+12x | | 4^(3x+1)=1024 | | 50=10n-10 | | x2+x-20-104=0 | | 5t–6–3t=2(t–2) | | x^2+x-20-104=0 | | 5x^2-8^2=16 | | 120=-5(-3+3a) | | -2.6d+18=-10.84 | | 8-1x+3=5 | | 5x=8x+7+5x | | x÷3=-3 | | -4s-1=7-2s | | -5-6k=115 | | -6a^2+9a+100=0 | | n^2-1=-99/100 |